Engineering a Disulfide Bond in the Lid Hinge Region of Rhizopus chinensis Lipase: Increased Thermostability and Altered Acyl Chain Length Specificity
نویسندگان
چکیده
The key to enzyme function is the maintenance of an appropriate balance between molecular stability and structural flexibility. The lid domain which is very important for "interfacial activation" is the most flexible part in the lipase structure. In this work, rational design was applied to explore the relationship between lid rigidity and lipase activity by introducing a disulfide bond in the hinge region of the lid, in the hope of improving the thermostability of R. chinensis lipase through stabilization of the lid domain without interfering with its catalytic performance. A disulfide bridge between F95C and F214C was introduced into the lipase from R. chinensis in the hinge region of the lid according to the prediction of the "Disulfide by Design" algorithm. The disulfide variant showed substantially improved thermostability with an eleven-fold increase in the t(1/2) value at 60°C and a 7°C increase of T(m) compared with the parent enzyme, probably contributed by the stabilization of the geometric structure of the lid region. The additional disulfide bond did not interfere with the catalytic rate (k(cat)) and the catalytic efficiency towards the short-chain fatty acid substrate, however, the catalytic efficiency of the disulfide variant towards pNPP decreased by 1.5-fold probably due to the block of the hydrophobic substrate channel by the disulfide bond. Furthermore, in the synthesis of fatty acid methyl esters, the maximum conversion rate by RCLCYS reached 95% which was 9% higher than that by RCL. This is the first report on improving the thermostability of the lipase from R. chinensis by introduction of a disulfide bond in the lid hinge region without compromising the catalytic rate.
منابع مشابه
Enhanced thermostability of a Rhizopus chinensis lipase by in vivo recombination in Pichia pastoris
BACKGROUND Lipase from Rhizopus chinensis is a versatile biocatalyst for various bioconversions and has been expressed at high-level in Pichia pastoris. However, the use of R. chinensis lipase in industrial applications is restricted by its low thermostability. Directed evolution has been proven to be a powerful and efficient protein engineering tool for improvement of biocatalysts. The present...
متن کاملThe role of Glu87 and Trp89 in the lid of Humicola lanuginosa lipase.
The importance of Glu87 and Trp89 in the lid of Humicola lanuginosa lipase for the hydrolytic activity at the water/lipid interface was investigated by site-directed mutagenesis. It was found that the effect on the hydrolytic activity upon the replacement of Trp89 with Phe, Leu, Gly or Glu was substrate dependent. The Trp89 mutants displayed an altered chain length specificity towards triglycer...
متن کاملAcyl-chain specificity of human milk bile-salt-activated lipase.
In order to probe the active-site structure of human milk bile-salt-activated lipase (BAL), the kinetics of the BAL-catalysed reaction were studied using monoesters as substrates. Among the fatty acyl chains, ranging from C8 to C16 of monoacylglycerols in a single equimolar assay mixture, there was a consistent trend of increased reactivity with decreased fatty-acyl-chain length for both the ba...
متن کاملA comparison on Lipase Production from Soybean meal and Sugarcane Bagasse in Solid State Fermentation using Rhizopus oryzae
In this study, solid-state fermentation of two types of agricultural residues/products for lipase production in a tray-bioreactor was investigated. Rhizopus oryzae was used as a potential fungus strain and two types of agricultural residues including soybean meal and sugarcane bagasse were utilized as substrate. Fermentation was carried out in two different operational conditions: one with cont...
متن کاملRole of N-linked glycosylation in the secretion and enzymatic properties of Rhizopus chinensis lipase expressed in Pichia pastoris
BACKGROUND The methylotrophic yeast, Pichia pastoris, is widely used as a useful experimental tool in protein engineering and production. It is common for proteins expressed in P. pastoris to exhibit N-glycosylation. In recent years, glycosylation studies in P. pastoris have attracted increasing attention from scholars. Rhizopus chinensis lipase (RCL) is one of the most important industrial lip...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 7 شماره
صفحات -
تاریخ انتشار 2012